On higher regulators of Picard modular surfaces

Linli Shi (Connecticut)

21-Nov-2024, 00:00-01:00 (13 months ago)

Abstract: The Birch and Swinnerton-Dyer conjecture relates the leading coefficient of the L-function of an elliptic curve at its central critical point to global arithmetic invariants of the elliptic curve. Beilinson’s conjectures generalize the BSD conjecture to formulas for values of motivic L-functions at non-critical points. In this talk, I will relate motivic cohomology classes, with non-trivial coefficients, of Picard modular surfaces to a non-critical value of the motivic L-function of certain automorphic representations of the group GU(2,1).

number theory

Audience: researchers in the topic


UCSD number theory seminar

Series comments: Most talks are preceded by a pre-talk for graduate students and postdocs. The pre-talks start 40 minutes prior to the posted time (usually at 1:20pm Pacific) and last about 30 minutes.

Organizers: Kiran Kedlaya*, Alina Bucur, Aaron Pollack, Cristian Popescu, Claus Sorensen
*contact for this listing

Export talk to